VIRTUALIZATION OF RESIDENTIAL GATEWAYS

Mario Ibáñez, Natividad Martínez Madrid and Ralf Seepold

Fifth International Workshop on Intelligent Solutions in Embedded Systems

WISES’07

Universidad Carlos III de Madrid, Madrid, June 21-22, 2007
Table of Contents

► Motivation
► Objectives
► State of the Art
► Management Architecture on OSGi
 – Mono-provider model
 – Multi-provider model with virtualization
► Results
► Conclusions
► Future Work
Current Scenario
Future Scenario
Objectives

1. Provide one low cost device
2. Management of multiple services
3. Remote management from multiple service providers
4. Differentiation of users
5. Confidentiality
6. Independency
7. Liability
Residential Gateway

“A Residential Gateway is one or more devices that connects one or more access networks to one or more home networks and delivers services to the home environment”‡

Main features:
- Provide a remote management service to
 - residential gateway (RGW)
 - home networks
 - devices connected the residential gateway
- Allow device or application to connect with a certain QoS
- Recognize and combine device capabilities to offer customers a better “integrated home environment”

Current Approaches

► Mono-Provider management
 – Based on JMX: Only the operator manages the RGW
 – Based on RBAC (Role-Based Access Control): problem is tackled as a policy-based access

► Multi-Provider management
 – Based on Virtual platforms to provide isolation
 – Limited to two kinds of managers
 ▪ the operator: controls the service platform
 ▪ service providers: manages the virtual platforms
 – Virtual platforms based on JMX bundles

► Different business model and architecture
Current Projects

► European projects and open forums
 – Multi Service Access Everywhere (MUSE, IST-026442)
 – Multimedia Networking (MEDIANET, IST-026025)
 – Platforms for Networking Service Delivery (PLANETS, MEDEA+ project A-121)
 – Home Gateway Initiative (HGI)
OSGi

► Java-based open, common architecture for network delivery of managed services
► Services are added through software components *(bundles)*
► Only one root administrator
► Not pre-define remote management standard
Virtualization (I)

► Every machine is composed of different abstractions and interfaces
► A virtual machine is the combination of a real machine and a virtualization software
► A virtual machine executes software that can be a process or a complete system
► Features
 – A way of relaxing constraints
 – Increase flexibility
 – Development of an isomorphism
 – Not an abstraction
 – Isolation between different instances
Virtualization (II)

► Virtualization Process
 1. Mapping of virtual resources to the real resources in the underlying machine
 2. The use of real machine instructions and system calls to carry out the actions specified by the virtual machine

► Types
 – Process Virtual Machines (Multi-programming, Emulators, Optimizers, High Level Languages Virtual Machines)
 – System Virtual Machines (Virtual Machines Monitors, Hosted Virtual Machines, Whole System Virtual Machines, Co-design Virtual Machines)
Mono-Provider Model

- ACS: stores configuration data of the services in the access providers side
- MIB: based on the TR-098 protocol stores the configuration of the RGW
- NeCB: a TR-069 client to communicate with ACS
- NoCB: Used by NeCB to store data in a MIB
- CNCB: configures the router translation data from the MIB
- CCF: configuration file of the router software Click!

First abstraction: generic management / router specific management
Evolution to Multi-Provider

► Basic architecture for the automatic management by one manager

► Multiple managers
 – Each provider manages its own services
 – No other provider manages/ knows those services

► Virtualization provides isolation between managers
 – Each provider in one virtual platform
 – Each provider works as it is the only provider of the RGW

► Virtual Platforms
 – Only one manager
 – The set of bundles from a service provider
Multi-Provider Model

- Virtual Bundle: a bundle in a virtual platform
- System Bundle: a bundle out of virtual platform
- Global Service: a service defined by a bundle that can be used by all bundles
- Local Service: a service defined by a bundle that can be used by bundles in the same situation
- Router Service: configures the router
- Policy Service: defines access for users and services
- Virtualization Service: virtualization software

- Residential Gateway
- OSGi
- Virtual Platform M
- Management Servlet Bundle
- Router Manager Bundle
- Virtual Platform A
- MIB
- Signal Processor Bundle
- Virtual Platform Manager Bundle
- Router Manager Bundle
- Virtual Platform
- Manager Bundle
- Service Bundle
- Signal Processor Bundle
- Router Configuration File
- Router Service
- Virtualization Service
- Network MIB
- Platform MIB
- Policy Service
- Network Configurator Bundle
- TR-069
- TR-069
- Global Provider
- ACS
- Virtual Bundle: a bundle in a virtual platform
- System Bundle: a bundle out of virtual platform
- Global Service: a service defined by a bundle that can be used by all bundles
- Local Service: a service defined by a bundle that can be used by bundles in the same situation
- Router Service: configures the router
- Policy Service: defines access for users and services
- Virtualization Service: virtualization software
Multi-Provider Roles

► RGW vendor
 – Predefined bundles and services for configuration of router and updating predefined bundles

► Access provider
 – Defines access policies
 – Configures QoS policies

► Service provider
 – Installs services
 – Manages services

► Final user
 – Installs its own services and bundles
Results

► Prototype implemented on an embedded PC
 – Router software Click
 – OSGi implementation Oscar 1.5
 – Ubuntu 6.06 Linux

► Two different configuration systems:
 – Automatic configuration based on the TR-069 protocol
 – Manual configuration using a servlet in a bundle

► Virtualization Service implemented
 – Mechanism for a first access of the service provider
 – Creation of new virtual platforms
 – Management of global and local services

► Router Service developed
 – Configuration of the behaviour of the router
Conclusions

► Virtualized model for the management of a RGW in a multi-provider scenario
► A new virtual architecture developed based on the study of classical virtual machines
► Most objectives have been achieved due to the use of OSGi and virtualization
 ✓ Provide only one device
 ✓ Management of multiple services
 ✓ Remote management of multiple service providers
 ✓ Confidentiality
 ✓ Independency
► We used open source software
Future Work

► Differentiation of end users: Professional and domestic over the same RGW
► Define a mechanism for controlling and managing the policies
► Notification of concurrent use of resources
► Liability: controlling resources, like the use of CPU in Java, in order to detect and manage possible abuses in a virtual platform
► Connection to more than one access network